
Enforcing Data Integrity with
SAS Audit Trails

Vincent Rabatin

PhilaSUG Spring Meeting, June 5, 2019
R

Rabatin Pharma Services

Data Validation
Questions

When we import data from an electronic data

capture system or creating an SDTM or AdAM

dataset, we want to know if the observations match

their specification.

We may ask:

▪ Do variables have values that are out of range,

impermissible or missing?

▪ If required, do variables correspond to a code list

or reference dataset?

▪ Are dependencies between other variables in the

same record enforced?

▪ Are duplicate records or records that violate

primary key constraints present?

Integrity
Constraints and

Audit Trails

Features introduced in SASVersions 7 and 8

can help us answer many data validation

questions.

Integrity constraints are rules that place

restrictions on the observations that a dataset

may contain.

Audit trails log successful and unsuccessful

attempts to alter the observations in a

dataset.

These features complement each other to

ensure that valid observations get passed to

the output dataset and the invalid

observations get trapped and held for

inspection.

Disclaimer

▪ The methods described here will not detect

all types of errors that may occur in the data.

▪ Constraints on data involving more

complicated relations between observations,

such as, ensuring that the dates of successive

events are greater than those that come

before, require additional measures.

▪ Automated checks are only an aid, there is no

substitute for manually checking the dataset

before delivery.

Integrity Constraints
▪ Primary Key – Requires that specified variables(s)

be unique and not null.

▪ Unique – Requires that specified variable(s) be

unique: only one null value is allowed.

▪ Not Null – Requires that the variable contain a

value.

▪ Check – Limits the variable to a specific set, range,

or relation to other variables in the same

observation.

▪ Restrict – Does not allow an observation to be

inserted unless specified variables match

variables in another dataset (foreign key).

Primary Key

CheckUnique

Not Null Restrict

Integrity
Constraints

Implementing Integrity Constraints

In the SAS system there are two ways to

implement integrity constraints:

▪ Proc Datasets

▪ Proc SQL

Which you choose is a matter of preference. My

purpose is to encourage you to automate the

process by developing a macro driven by the

metadata of your project.

Primary Key

CheckUnique

Not Null Restrict

Integrity
Constraints

Proc SQL;

create table mystudy.subjects

(SUBJID char(10) label="Subject Identifier",

SEX char(1) label="Gender",

AGE num label="Age in Years",

SITE char(3) label="Site ID",

SITENAME char(35) label="Site Name")

;

Driven by the project’s metadata, have your macro

create an empty dataset whose variable attributes

correspond to the specification. It might produce code

like this.

Metadata for
constructing the
target datasets

▪DATASET (to be created)

▪NAME

▪TYPE

▪LENGTH

▪LABEL

▪ORDER

▪FORMAT (optional)

/*** the sitelist dataset will serve as a lookup table ***/

create table mystudy.sitelist

(SITE char(3),

SITENAME char(35),

/* This is how you add a constraint in PROC SQL */

constraint mylist primary key(SITE, SITENAME))

;

If your project contains a lengthy code list you may store it in

an auxiliary dataset. This one is constrained by a primary key:

it will therefore contain an index.

/* load the lookup table with valid sites */

insert into mystudy.SITELIST(SITE, SITENAME)

values("001","Smith Therapy Associates")

values("002","Maximus Clinic")

values("003","Jones Hospital")

values("004","Rodgers Oncology Center")

values("005","Feldspar Group")

values("006","United Physicians Treatment Center")

;

quit;

Let’s fill the lookup table with the valid site code

and names used in our project.

/*** Apply Constraints with PROC DATASETS to the subjects table ***/

/*** using PROC DATASETS ***/

proc datasets nolist library=mystudy;

modify subjects;

/* Set the primary key (this also creates an index on the dataset) */

ic create pk = PRIMARY KEY(SUBJID)

message= "Only one record per subject is allowed.";

/* Check for valid values by list */

ic create val_sex = CHECK(where=(sex in ('M','F')))

message = "Valid values for variable SEX are either 'M' or 'F’.”;

/* Check for valid values by computation */

ic create val_age = CHECK(where=(18 <= age <= 55))

message = "An invalid AGE has been provided.";

/* Check for valid values by key in another dataset */

ic create site_list=FOREIGN KEY (SITE SITENAME)

REFERENCES mystudy.SITELIST;

run;

quit;

Primary Key

Check: Value in list

Check: Value in range

Foreign Key: Values

match those in the

lookup dataset

/* Check for relations between variables */

ic create val_reason_other = CHECK(where=((reason in(1,2,3,4)

and other_reason=“”) or (reason=5 and other NE “”))

message = “If reason is 5, other_reason cannot be blank, else other_reason

must be blank.";

A CHECK constraint may be used to validate variables dependent

on others in the same observation. For example: A dataset may

contain two variables: reason and other_reason. Codes 1 through

4 map to a list of expected reasons. The code for “Other Reason”

is 5. If variable reason is not 5, then other_reasonmust be blank. If

reason is 5, then other_reasonmust contain text.

Metadata for
constructing the

constraints

▪DATASET

▪CONSTRAINT_NAME

▪CONSTRAINT_TYPE

▪CONSTRAINT_TEXT

▪CONSTRAINT_MESSAGE

%do i=1 to &number_of_constraints;

ic create &&constraint_name(&i)= &&constraint_type(&i)

(&&constraint_text(&i))

message = “&&constraint_message(&i)”;

%end;

If you prefer PROC DATASETS to PROC SQL, your

macro might contain a code fragment such as this.

%do i=1 to &number_of_constraints;

constraint &&constraint_name(&i) &&constraint_type(&i)

(&&constraint_text(&i))

message = “&&constraint_message(&i)”

%end;

Similarly, the code for PROC SQL would be:

/*** Add a constraint to validate subject */

proc datasets nolist library=mystudy;

modify mystudy;

ic create val_subj = check(where=(0 < prxmatch(prxparse("/^SUBJ-[0-9]{5}/ "), subjid)))

message = "An invalid SUBJECT has been provided.";

run;

Quit;

You may ask if regular expressions may be used to validate variables.

The answer is yes. In our sample study, the variable subjid has the form

SUBJ-ddddd, where the d’s are digits.

Using Regular Expressions to Validate

Variables (1)

The regular expression is

nested inside

prxmatch(prxparse())

What if the regular expression is really long, or we want to reuse it for several

other variables, such as ISO8601 datetimes?

If that’s the case, we can declare the regular expression as a macro variable.

Here, I use SQL syntax to declare the constraint.

Using Regular Expressions to Validate

Variables (2)

%let ISO=/^(-?(?:[1-9][0-9]*)?[0-9]{4})-(1[0-2]|0[1-9])-(3[0-1]|0[1-9]|[1-2][0-

9])T(2[0-3]|[0-1][0-9]):([0-5][0-9]):([0-5][0-9])(\.[0-9]+)?$/;

Proc SQL;

create table DATELIST

(ISODATE char(40),

constraint ISOCHK check (0 < prxmatch(prxparse("&ISO"), ISODATE)));

;

Audit Trail

The next step is to apply an audit trail

to trap records that violate the

integrity constraints. The following

slides explain how the process

works.

A SAS Audit Trail:

▪ Is of type audit with the same name

as the parent SAS data file

▪Logs modifications to a SAS data file

▪Additions

▪Deletions

▪Updates

▪Provides tracking information

▪Who made the modification

▪What was modified

▪When it was made

▪Why an operation failed!

/*** Use PROC DATASETS to initiate an audit trail ***/

Proc Datasets nolist library=mystudy;

audit mystudy.subjects;

initiate;

log error_image=yes;

Run;

Quit;

How to Initiate
an Audit Trail

Strategy of the
Macro

Metadata
Attributes

Create an empty output
dataset with constraints and

audit trail

Empty
Dataset

Unvalidated
Dataset

Attempt to insert or
append records into
the empty dataset

Valid Data

Audit Trail
containing Valid

and Invalid
records

Lookup
datasets (if

needed)

Metadata
Constraints

/*** Create a test dataset, subjects_raw ***/

data subjects_raw;

input SUBJID $10. +1

SEX $1. +1

AGE 2. +1

SITE $3. +1

SITENAME $35.

;

datalines;

SUBJ-00001 M 55 003 Jones Hospital

SUBJ-00002 M 05 006 United Physicians Treatment Center

SUBJ_00003 F 23 003 Jones Hospital

SUBJ-00004 U 42 003 Jones Hospital

SUBJ-00007 F 23 003 Jonas Hospital

SUBJ-00011 M 55 005 Feldspar Group

SUBJ-00017 F 37 003 Jones Hospital

SUBJ-00018 F 75 001 Smith Therapy Associates

SUBJ-00022 M 15 003 Jones Hospital

SUBJ-00001 M 31 003 Jones Hospital

;

run;

Test Data with
Errors

Append records
to the dataset

PROC APPEND base=mystudy.subjects

data=subjects_raw;

run;

Checking the
Results

1. The audit trail will contain an operation

code _AEOPCODE_ for all attempted

records. An _AEOPCODE_ of “EA”

signifies a failure of the record to be

added. _ATMESSAGE_ contains the

message we assigned. We will print

records from the audit trail with an “EA”

opcode.

2. The SAS Log of PROC APPEND will

reveal mismatches between the length

of variables on the input dataset and

the length of variables on the

standardized dataset.

Print any Errors

Proc print data=mystudy.subjects (type=audit);

var SUBJID SEX AGE SITE SITENAME

ATMESSAGE;

where _ATOPCODE_="EA";

/* Code EA is for Observation Add Failed */

run;

Obs SUBJID SEX AGE SITE SITENAME _ATMESSAGE_

1 SUBJ-00002 M 5 006 United Physicians Treatment

Center

ERROR: An invalid AGE has been provided. Add/Update failed for data set

MYSTUDY.SUBJECTS because data value(s) do not comply with integrity constraint

val_age.

2 SUBJ_00003 F 23 003 Jones Hospital ERROR: An invalid SUBJECT has been provided. Add/Update failed for data set

MYSTUDY.SUBJECTS because data value(s) do not comply with integrity constraint

val_subj.

3 SUBJ-00004 U 42 003 Jones Hospital ERROR: Valid values for variable SEX are either 'M' or 'F'. Add/Update failed for data set

MYSTUDY.SUBJECTS because data value(s) do not comply with integrity constraint

val_sex.

4 SUBJ-00007 F 23 003 Jonas Hospital ERROR: Observation was not added/updated because a matching primary key value

was not found for foreign key site_list.

5 SUBJ-00018 F 75 001 Smith Therapy Associates ERROR: An invalid AGE has been provided. Add/Update failed for data set

MYSTUDY.SUBJECTS because data value(s) do not comply with integrity constraint

val_age.

6 SUBJ-00022 M 15 003 Jones Hospital ERROR: An invalid AGE has been provided. Add/Update failed for data set

MYSTUDY.SUBJECTS because data value(s) do not comply with integrity constraint

val_age.

7 SUBJ-00001 M 31 003 Jones Hospital ERROR: Only one record per subject is allowed. Add/Update failed for data set

MYSTUDY.SUBJECTS because data value(s) do not comply with integrity constraint pk.

Cleanup 1:
Remove the

audit trail

Proc Datasets nolist

library=mystudy;

audit subjects;

terminate;

Run;

Quit;

Cleanup 2 –
Remove the
constraints

If the constraints are not removed, the output

dataset cannot be deleted or overwritten. If

there are errors, you must remove the

constraints before reconstructing it.

proc datasets nolist library=mystudy;

modify subjects;

ic delete pk;

ic delete val_sex;

ic delete val_age;

ic delete site_list;

ic delete val_subj;

run;

Discussion

These techniques can go a long way to

ensuring that the output datasets are

correct, but errors have a way of creeping

in. The quality of the constraints we apply is

dependent on our imagination. Will we

think of everything that can go wrong? Are

there problems that could occur that cannot

be caught by the constraints we put on the

datasets? Of course. So additional quality

control measures, such as double

programming and visual checks are still

needed.

References

Integrity Constraints and Audit Trails Working Together

Gary Franklin, SAS Institute Inc, Austin, TX

Art Jansen, SAS Institute Inc, Englewood, CO

https://support.sas.com/resources/papers/proceedings/proceedings/sugi25/25/aa/2

5p008.pdf

https://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm

#a001224397.htm

https://mafiadoc.com/audit-trails-for-sas-data-sets_59f356db1723dd89e74bc7f5.html

https://support.sas.com/resources/papers/proceedings/proceedings/sugi25/25/aa/25p008.pdf
https://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a001224397.htm
https://mafiadoc.com/audit-trails-for-sas-data-sets_59f356db1723dd89e74bc7f5.html

